In medical applications, catheters are used for minimally invasive treatment of conditions such as clogged arteries. The catheter is guided through the arteries until it reaches the spot requiring treatment. The blockage in the artery is then remedied with the help of a balloon.
Reliable welding, sealing and bonding of catheter components
The delicate balloon must be reliably joined to the catheter tubing. This is normally done by laser welding. For optimal welding results, the catheter is pre-treated with low-pressure plasma. The plasma pre-treatment opens and cleans the surfaces of the different components to enable highly robust sealing. Many previously incompatible materials have been reliably welded in this way.
Drug-Coating
The balloons are coated with a drug in an exact dosage during the plasma process. The balloons are guided with the aid of the catheter to the affected area in the body. When the balloon is opened, the medication is released. The drug must adhere reliably to the balloon. At the appropriate place in the body, the drug must be dispensed safely in the targeted dosage
Slip-Coating: Hydrophobic coating on outside surface of catheters
Friction between the catheter and blood vessel walls is often experienced as painful. A super-hydrophobic coating applied to the catheter not only reduces friction as the catheter is being introduced but also enables exact positioning of the balloon in the body.
For these applications, uniform pre-treatments under reproducible conditions is indispensable. This can be achieved via the plasma process of the catheter components. Other treatment methods, which include high temperatures or involving with electrical arcing can partially damage the catheter or balloon and pose risks to medical application.
The Aurora Tubing System developed by Plasmatreat delivers exceptionally consistent plasma intensity throughout the treatment space.
Thin-wall medical polymers are activated in high quality for safe welding. Functional coatings such as slip-coating or drug coating are applied homogeneously to the polymers using reactive gases in the low-pressure plasma process.